Structural domains and matrix attachment regions along colinear chromosomal segments of maize and sorghum.

نویسندگان

  • A P Tikhonov
  • J L Bennetzen
  • Z V Avramova
چکیده

Although a gene's location can greatly influence its expression, genome sequencing has shown that orthologous genes may exist in very different environments in the genomes of closely related species. Four genes in the maize alcohol dehydrogenase (adh1) region represent solitary genes dispersed among large repetitive blocks, whereas the orthologous genes in sorghum are located in a different setting surrounded by low-copy-number DNAs. A specific class of DNA sequences, matrix attachment regions (MARs), was found to be in comparable positions in the two species, often flanking individual genes. If these MARs define structural domains, then the orthologous genes in maize and sorghum should experience similar chromatin environments. In addition, MARs were divided into two groups, based on the competitive affinity of their association with the matrix. The "durable" MARs retained matrix associations at the highest concentrations of competitor DNA. Most of the durable MARs mapped outside genes, defining the borders of putative chromatin loops. The "unstable" MARs lost their association with the matrix under similar competitor conditions and mapped mainly within introns. These results suggest that MARs possess both domain-defining and regulatory roles. Miniature inverted repeat transposable elements (MITEs) often were found on the same fragments as the MARs. Our studies showed that many MITEs can bind to isolated nuclear matrices, suggesting that MITEs may function as MARs in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses.

We report a genetic recombination map for Sorghum of 2512 loci spaced at average 0.4 cM ( approximately 300 kb) intervals based on 2050 RFLP probes, including 865 heterologous probes that foster comparative genomics of Saccharum (sugarcane), Zea (maize), Oryza (rice), Pennisetum (millet, buffelgrass), the Triticeae (wheat, barley, oat, rye), and Arabidopsis. Mapped loci identify 61.5% of the re...

متن کامل

DNA sequence evidence for the segmental allotetraploid origin of maize.

It has long been suspected that maize is the product of an historical tetraploid event. Several observations support this possibility, including the fact that the maize genome contains duplicated chromosomal segments with colinear gene arrangements. Some of the genes from these duplicated segments have been sequenced. In this study, we examine the pattern of sequence divergence among 14 pairs o...

متن کامل

Comparative sequence analysis of the sorghum Rph region and the maize Rp1 resistance gene complex.

A 268-kb chromosomal segment containing sorghum (Sorghum bicolor) genes that are orthologous to the maize (Zea mays) Rp1 disease resistance (R) gene complex was sequenced. A region of approximately 27 kb in sorghum was found to contain five Rp1 homologs, but most have structures indicating that they are not functional. In contrast, maize inbred B73 has 15 Rp1 homologs in two nearby clusters of ...

متن کامل

Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1.

We provide evidence for the location of matrix attachment sites along a contiguous region of 280 kb on maize chromosome 1. We define nine potential loops that vary in length from 6 kb to > 75 kb. The distribution of the different classes of DNA within this continuum with respect to the predicted structural loops reveals an interesting correlation: the long stretches of mixed classes of highly r...

متن کامل

Matrix Attachment Regions and Transcribed Sequences within a Long Chromosomal Continuum Containing Maize Adh7

We provide evidence for the location of matrix attachment sites along a contiguous region of 280 kb on maize chromosome 1. We define nine potential loops that vary in length from 6 kb to >75 kb. The distribution of the different classes of DNA within this continuum with respect to the predicted structural loops reveals an interesting correlation: the long stretches of mixed classes of highly re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2000